Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2021

The Dynamics of the Alfvénic Oval

The auroral oval is a well-established concept, introduced more than five decades ago. The Alfvénic oval, on the other hand, is a very recent concept, which has been revealed in both observational and numerical studies. This is the first review of the global Alfvénic oval, while also defining primary, secondary and tertiary layers of the Alfvénic oval. The focus lies on the large-scale dynamic properties of the global Alfvénic oval in relation to the AE index, substorm phases, storm phases and solar wind/IMF conditions. Statistical data recorded above and below the nominal auroral acceleration region are reviewed, together with results from global simulation studies. The Alfvénic oval s relation to the auroral oval is also reviewed. This review demonstrates that the Alfvénic oval is well enough defined and investigated to give it its name, and it demonstrates that our understanding allows for the prediction of the Alfvénic oval under various conditions.

Keiling, Andreas;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: aug

YEAR: 2021     DOI: 10.1016/j.jastp.2021.105616

AURORA; Alfven wave; Energy transport; geomagnetic activity; magnetosphere-ionosphere coupling; Wave-particle interaction

Explicit IMF By-Dependence in Geomagnetic Activity: Quantifying Ionospheric Electrodynamics

Geomagnetic activity is mainly driven by the southward (Bz) component of the interplanetary magnetic field (IMF), which dominates all solar wind coupling functions. Coupling functions also depend on the absolute value of the dawn-dusk (By) component of the IMF, but not on its sign. However, recent studies have shown that for a fixed level of solar wind driving, auroral electrojets in the Northern Hemisphere (NH) are stronger for By \textgreater 0 than for By \textless 0 during NH winter. In NH summer, the dependence on the By sign is reversed. While this By sign dependence, also called the explicit By-dependence, is very strong in the winter hemisphere, it is weak in the summer hemisphere. Moreover, the explicit By-dependence is much stronger in the westward electrojet than in the eastward electrojet. In this study, we study how the explicit IMF By-dependence is coupled with large-scale field-aligned currents (FACs) by using FAC measurements from the Active Magnetosphere and Planetary Electrodynamics Response Experiment and an empirical ionospheric conductance model. We model the complete ionospheric electrodynamics by solving the current continuity equation, and show that during periods of elevated solar wind driving (Bz \textless 0), the IMF By component modulates Regions 1 and 2 FACs in the dawn sector of the winter hemisphere. This leads to an explicit By-dependence in ionospheric conductance and the westward electrojet. We also show that the By-dependence of FACs and conductance is weak in the dusk sector, which explains the earlier observation of the weak By-dependence of the eastward electrojet.

Holappa, L.; Robinson, R.; Pulkkinen, A.; Asikainen, T.; Mursula, K.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2021JA029202

space weather; magnetosphere-ionosphere coupling; field-aligned currents; geomagnetic activity

The Northward IMF Magnetosphere

The manner in which the Earth s magnetosphere responds to the solar wind is highly dependent upon the orientation of the interplanetary magnetic field (IMF), particularly the north–south (B Z ) component. As most auroral and geomagnetic activity occurs when the IMF is southward (or weakly northward, but dominated by the dawn–dusk [B Y ] component), it is perhaps unsurprising that these conditions have received the most attention. However, when the IMF is more strongly northward (B Z \textgreater 0 and B Z \textgreater \textbarB Y \textbar), magnetospheric dynamics (e.g. magnetic reconnection and auroral activity) move to higher latitudes; certain aspects of this activity are much more poorly understood than their southward IMF counterparts. In this chapter, we provide a review of the historical context and current understanding of the behavior of the Earth s magnetosphere during periods of northward IMF, and outline some current controversies and future directions of research.

Fear, Robert;

Published by:       Published on:

YEAR: 2021     DOI: 10.1002/9781119815624.ch19

auroral response; Earth s magnetosphere; geomagnetic activity; interplanetary magnetic field; magnetospheric dynamics; solar wind-magnetosphere coupling

2014

Simulations of the equatorial thermosphere anomaly: Geomagnetic activity modulation

The modulation of geomagnetic activity on the equatorial thermosphere anomaly (ETA) in thermospheric temperature under the high solar activity condition is investigated using the Thermosphere Ionosphere Electrodynamics General Circulation Model simulations. The model simulations during the geomagnetically disturbed interval, when the north-south component of the interplanetary magnetic field (Bz) oscillates between southward and northward directions, are analyzed and also compared with those under the quiet time condition. Our results show that ionospheric electron densities increase greatly in the equatorial ionization anomaly (EIA) crest region and decrease around the magnetic equator during the storm time, resulting from the enhanced eastward electric fields. The impact of both the direct heat deposition at high latitudes and the modulation of the storm time enhanced EIA crests on the ETA are subsequently studied. The increased plasma densities over the EIA crest region enhance the field-aligned ion drag that accelerates the poleward meridional winds and consequently their associated adiabatic cooling effect. This process alone produces a deeper temperature trough over the magnetic equator as a result of the enhanced divergence of meridional winds. Moreover, the enhanced plasma-neutral collisional heating at higher latitudes associated with the ionospheric positive storm effect causes a weak increase of the ETA crests. On the other hand, strong changes of the neutral temperature are mainly confined to higher latitudes. Nevertheless, the changes of the ETA purely due to the increased plasma density are overwhelmed by those associated with the storm time heat deposition, which is the major cause of an overall elevated temperature in both the ETA crests and trough during the geomagnetically active period. Associated with the enhanced neutral temperature at high latitudes due to the heat deposition, the ETA crest-trough differences become larger under the minor geomagnetic activity condition than under the quiet time condition. However, when geomagnetic activity is further elevated, the ETA crests tend to be masked by high temperatures at middle and high latitudes.

Lei, Jiuhou; Wang, Wenbin; Thayer, Jeffrey; Luan, Xiaoli; Dou, Xiankang; Burns, Alan; Solomon, Stanley;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA020152

equatorial thermosphere anomaly; geomagnetic activity; ion-neutral coupling; positive ionospheric storm



  1